Close Range Photogrammetry
Contents

Abbreviations ...x

Image sources ..xii

1 Introduction ..1
 1.1 Overview1
 1.2 Fundamental methods ...2
 1.2.1 The photogrammetric process ..2
 1.2.2 Aspects of photogrammetry ...3
 1.2.3 Image forming model ...6
 1.2.4 Photogrammetric systems ..8
 1.2.5 Photogrammetric products ...11
 1.3 Applications .. 13
 1.4 Historical development ...15
References and further reading ..25

2 Mathematical fundamentals ..31
 2.1 Coordinate systems ...31
 2.1.1 Image and camera coordinate systems ...31
 2.1.2 Comparator coordinate system ...32
 2.1.3 Model coordinate system ..32
 2.1.4 Object coordinate system ...33
 2.1.5 3D instrument coordinate system ...33
 2.2 Coordinate transformations ..34
 2.2.1 Plane transformations ...34
 2.2.2 Spatial transformations ...39
 2.3 Adjustment techniques ...52
 2.3.1 The problem ..52
 2.3.2 Least-squares method (Gauss-Markov linear model)55
 2.3.3 Measures of quality ..59
 2.3.4 Error detection in practice ..67
 2.3.5 Computational aspects ..70
 2.4 Geometric elements ..72
 2.4.1 Analytical geometry in the plane ...73
 2.4.2 Analytical geometry in 3D space ..82
 2.4.3 Surfaces ..90
 2.4.4 Compliance with design ...93
References ...94
3 Imaging technology

3.1 Imaging concepts ... 97
 3.1.1 Methods of image acquisition .. 97
 3.1.2 Imaging configurations .. 98

3.2 Geometric fundamentals .. 100
 3.2.1 Image scale and accuracy ... 100
 3.2.2 Optical imaging .. 104
 3.2.3 Interior orientation of a camera .. 114
 3.2.4 Resolution ... 129
 3.2.5 Fundamentals of sampling theory ... 132

3.3 Imaging systems ... 135
 3.3.1 Analogue imaging systems ... 135
 3.3.2 Digital imaging systems ... 147
 3.3.3 Laser-based measuring systems .. 176
 3.3.4 Other imaging systems .. 181

3.4 Targeting and illumination .. 183
 3.4.1 Object targeting ... 183
 3.4.2 Illumination techniques ... 190

References ... 195

4 Analytical methods

4.1 Overview ... 201

4.2 Orientation methods ... 202
 4.2.1 Exterior orientation ... 202
 4.2.2 Collinearity equations .. 204
 4.2.3 Orientation of single images .. 206
 4.2.4 Object position and orientation by inverse resection 214
 4.2.5 Orientation of stereo image pairs ... 215

4.3 Bundle triangulation ... 229
 4.3.1 General remarks ... 229
 4.3.2 Mathematical model ... 234
 4.3.3 Object coordinate system (definition of datum) 244
 4.3.4 Generation of approximate values 251
 4.3.5 Quality measures and analysis of results 260
 4.3.6 Strategies for bundle adjustment ... 264

4.4 Object reconstruction .. 266
 4.4.1 Single image processing .. 266
 4.4.2 Stereoscopic processing ... 274
 4.4.3 Multi-image processing ... 283

4.5 Line photogrammetry ... 293
 4.5.1 Space resection using parallel object lines 293
 4.5.2 Collinearity equations for straight lines 296
 4.5.3 Relative orientation with straight lines 297
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>analogue-to-digital converter</td>
</tr>
<tr>
<td>AGC</td>
<td>automatic gain control</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ASPRS</td>
<td>American Society for Photogrammetry and Remote Sensing</td>
</tr>
<tr>
<td>BRDF</td>
<td>bidirectional reflection distribution function</td>
</tr>
<tr>
<td>CAAD</td>
<td>computer aided architectural design</td>
</tr>
<tr>
<td>CAD</td>
<td>computer aided design</td>
</tr>
<tr>
<td>CAM</td>
<td>computer aided manufacturing</td>
</tr>
<tr>
<td>CCD</td>
<td>charge coupled device</td>
</tr>
<tr>
<td>CCIR</td>
<td>Comité consultatif international pour la radio (International Radio Consultative Committee)</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>compact disk – read-only memory</td>
</tr>
<tr>
<td>CID</td>
<td>charge injection device</td>
</tr>
<tr>
<td>CIE</td>
<td>Commission Internationale de l’Éclairage (International Commission on Illumination)</td>
</tr>
<tr>
<td>CIPA</td>
<td>Comité International de Photogrammétrie Architecturale (International Committee for Architectural Photogrammetry)</td>
</tr>
<tr>
<td>CMM</td>
<td>coordinate measurement machine</td>
</tr>
<tr>
<td>CMOS</td>
<td>complementary metal oxide semi-conductor</td>
</tr>
<tr>
<td>CT</td>
<td>computer tomogram, tomography</td>
</tr>
<tr>
<td>CTF</td>
<td>contrast transfer function</td>
</tr>
<tr>
<td>DAGM</td>
<td>Deutsche Arbeitsgemeinschaft für Mustererkennung (German Association for Pattern Recognition)</td>
</tr>
<tr>
<td>DCT</td>
<td>discrete cosine transform</td>
</tr>
<tr>
<td>DGPF</td>
<td>Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (German Society for Photogrammetry, Remote Sensing and Geoinformation)</td>
</tr>
<tr>
<td>DGZfP</td>
<td>Deutsche Gesellschaft für Zerstörungsfreie Prüfung (German Society for Non-Destructive Testing)</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung (German institute for standardization)</td>
</tr>
<tr>
<td>DLT</td>
<td>direct linear transformation</td>
</tr>
<tr>
<td>DMD</td>
<td>digital mirror device</td>
</tr>
<tr>
<td>DOF</td>
<td>degree(s) of freedom</td>
</tr>
<tr>
<td>DRAM</td>
<td>dynamic random access memory</td>
</tr>
<tr>
<td>DSM</td>
<td>digital surface model</td>
</tr>
<tr>
<td>DTP</td>
<td>desktop publishing</td>
</tr>
<tr>
<td>DVD</td>
<td>digital versatile (video) disk</td>
</tr>
<tr>
<td>DXF</td>
<td>autocad data exchange format</td>
</tr>
<tr>
<td>EP</td>
<td>entrance pupil</td>
</tr>
<tr>
<td>E’P</td>
<td>exit pupil</td>
</tr>
<tr>
<td>EPS</td>
<td>encapsulated postscript</td>
</tr>
<tr>
<td>FFT</td>
<td>full frame transfer or fast Fourier transform</td>
</tr>
<tr>
<td>FMC</td>
<td>forward motion compensation</td>
</tr>
<tr>
<td>FOV</td>
<td>field of view</td>
</tr>
<tr>
<td>FPGA</td>
<td>field-programmable gate array</td>
</tr>
<tr>
<td>FT</td>
<td>frame transfer</td>
</tr>
<tr>
<td>GIF</td>
<td>graphic interchange format</td>
</tr>
<tr>
<td>GIS</td>
<td>geograph(raphic) information system</td>
</tr>
<tr>
<td>GMA</td>
<td>Gesellschaft für Meß- und Automatisierungstechnik (Society for Metrology and Automation Technology)</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>HDTV</td>
<td>high definition television</td>
</tr>
</tbody>
</table>
Abbreviations

IEEE Institute of Electrical and Electronic Engineers
IFOV instantaneous field of view
IHS intensity, hue, saturation
IL interline transfer
INS inertial navigation system
ISO International Organisation for Standardization
ISPRS International Society for Photogrammetry and Remote Sensing
JPEG Joint Photographic Expert Group
LAN local area network
LCD liquid crystal display
LED light emitting diode
LoG Laplacian of Gaussian
LSM least squares matching
LUT lookup table
L W/PH line widths per picture height
LZW Lempel-Ziv-Welch (compression)
MOS metal oxide semiconductor
MPEG Motion Picture Expert Group
MR magnetic resonance
MTF modulation transfer function
PCMCIA Personal Computer Memory Card International Association
PLL phase-locked loop or pixel-locked loop
PNG portable network graphics
PSF point spread function
REM raster electron microscope
RGB red, green, blue
RMS root mean square
RMSE root mean square error
RPV remotely piloted vehicle
RV resolution power
SCSI small computer systems interface
SLR single lens reflex (camera)
SNR signal-to-noise ratio
SPIE The International Society for Optical Engineering
TIFF tagged image file format
TTL through the lens
TV television
USB universal serial bus
VDI Verband Deutscher Ingenieure (German Association of Engineers)
VLL vertical line locus
VR virtual reality
VRML virtual reality modelling language
Image sources

ABW Automatisierung + Bildverarbeitung Dr. Wolf GmbH, Frickenhausen, Germany: 3.129cd
AICON 3D Systems GmbH, Braunschweig, Germany: 3.76c, 3.109, 3.111, 3.117c, 6.8, 6.10, 6.21, 6.25, 6.26, 6.27, 6.46a, 8.27
AXIOS 3D Services GmbH, Oldenburg, Germany: 8.37a
BrainLAB AG, Heimstetten, Germany: 8.38
Breuckmann GmbH, Meersburg, Germany: 6.34
Carl Zeiss (ZI Imaging, Intergraph), Oberkochen, Jena, Germany: 1.25, 1.26, 1.27, 1.28, 3.12, 3.48, 3.96, 3.129ab, 6.2, 6.42, 6.43, 6.44, 8.11
DaimlerChrysler, Forschungszentrum Ulm, Germany: 5.68
Dalsa Inc., Waterloo, Ontario, Canada: 3.63a, 5.35a
DMT Deutsche MontanTechnologie, German Mining Museum, Bochum, Germany: 7.22
Dresden University of Technology, Forschungsgruppe 3D Display, Germany: 6.13b
ESTEC, Noordwijk, Netherlands: 8.28
Fachhochschule Bielefeld, Abt. Minden, Fachbereich Architektur und Bauingenieurwesen, Germany: 4.59
Fachhochschule Osnabrück, Internet Site “Einführung in Multimedia”, Germany: 3.60, 3.62
Fokus GmbH Leipzig, Germany: 4.58
Frank Data International NV, Netherlands: 8.8a
Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena: 6.38, 6.39, Germany
Fraunhofer Institute for Factory Operation and Automation (IFF), Magdeburg, Germany: 6.16
GOM Gesellschaft mbH, Braunschweig, Germany: 6.36
GSI Geodetic Services Inc., Melbourne, Florida, USA: 1.15, 1.32, 3.54, 3.55, 3.83, 3.84, 3.117b, 3.124b, 6.3, 8.24
Hasselblad Svenska AB, Göteborg, Sweden: 3.52
HDW Howaldtswerke Deutsche Werft, Kiel, Germany: 8.31
Imetric SA, Porrentruy, Switzerland: 1.14, 1.19, 3.85, 6.20, 6.28, 7.10
Institute of Applied Photogrammetry and Geoinformatics (IAPG), FH Oldenburg, Germany: 1.1, 1.12, 1.13, 1.17, 3.28, 3.29, 3.32, 3.68, 3.71, 3.73, 3.78, 3.87, 3.88, 3.89, 3.99, 3.117a, 3.119, 3.120, 4.10, 4.52, 4.56, 4.61, 5.2b, 5.11, 5.41, 5.53, 5.66, 6.14, 6.15, 7.6b, 7.20, 7.21, 8.4, 8.7, 8.12, 8.13, 8.20, 8.21
Institute of Geodesy and Geoinformatics, Applied Photogrammetry and Cartography, TU Berlin, Germany: 1.23, 3.108
Institute of Geodesy and Photogrammetry (IGP), ETH Zürich, Switzerland: 1.21, 4.75, 7.17, 8.5, 8.6
Institute of Photogrammetry, University of Bundeswehr, Neubiberg, Germany: 7.18, 7.19
Institute of Photogrammetry (IPI), University of Stuttgart, Germany: 8.9
Institute of Photogrammetry and Geoinformatics (IPI), University of Hannover, Germany: 8.10, 8.14, 8.15, 8.16, 8.17
Institute of Photogrammetry and Image Processing, TU Braunschweig, Germany: 1.18, 7.6a, 8.31, 8.32
INVERS, Essen, Germany: 8.19, 8.22, 8.23
Jenoptik Laser-Optik-Systeme GmbH, Jena, Germany: 3.86, 3.90, 3.91
Kamera Werk Dresden, Germany: 3.98
Kodak AG, Stuttgart, Germany: 1.31
Konica Corporation, Tokyo, Japan: 3.116a
Leica Geosystems (Wild, Kern, LH Systems, Cyra), Heerbrugg, Switzerland: 3.49, 3.50, 3.105, 3.110, 3.112, 3.113, 4.68, 4.70, 4.73, 6.12, 6.14, 6.31
Landeskriminalamt Nordrhein-Westfalen, Düsseldorf, Germany: 8.34
Mapvision Ltd, Espoo, Finland: 1.30, 6.40
Messbildstelle GmbH, Dresden, Germany: 8.3
Metronor GmbH, Saarbrücken, Germany, Norway: 6.6, 6.24
NASA, Jet Propulsion Laboratory, Pasadena, Ca., USA: 6.17
Phocad Ingenieurgesellschaft mbH, Aachen, Germany: 1.33, 6.19
Physikalisch-Technische Bundesanstalt, Braunschweig, Germany: 6.46b
Plus Orthopedics (Precision Instruments), Aarau, Switzerland: 8.37bc, 8.39
Ricoh Corporation, San Bernardino, Ca., USA: 3.118b
Rollei Fototechnic GmbH, Braunschweig, Germany: 1.16, 1.29, 3.13, 3.53, 3.56, 3.63b, 3.81, 3.82, 3.93, 3.95, 3.128, 4.44, 6.5, 6.9, 6.18, 7.8, 8.33
Sine Patterns LLC, Rochester, NY, USA: 3.34a
Sony Deutschland GmbH, Köln, Germany: 3.76b
Stadtpolizei Zürich, Switzerland: 8.34
Transmap Corporation, Columbus, Ohio, USA: 8.8b
University of Aalborg, Department of Development and Planning, Denmark: 4.59
University of Melbourne, Department of Geomatics, Parkville, Australia: 4.42, 5.2, 8.25
Volkswagen AG, Wolfsburg, Germany: 2.4, 6.45, 8.30
Weinberger Deutschland GmbH, Erlangen, Germany: 3.103, 7.15
Zoller and Fröhlich GmbH, Wangen im Allgäu, Germany: 3.105
1 Introduction

1.1 Overview

Chapter 1 provides an overview of the fundamentals of photogrammetry, with particular reference to close range measurement. After a brief discussion of the principal methods and systems, typical applications are presented. The chapter ends with a short historical review of close range photogrammetry.

Chapter 2 deals with mathematical basics. These include the definition of some important coordinate systems and the derivation of geometric transformations which are needed for a deeper understanding of topics presented later. In addition, the major aspects of least squares adjustment and statistics are summarised. Finally, a number of important geometrical elements used for object representation are discussed.

Chapter 3 is concerned with photogrammetric image acquisition for close range applications. Because of the wide variety of applications and instrumentation this chapter is extensive and wide-ranging. After an introduction to geometric basics and the principles of image acquisition, there follow discussions of analogue and digital imaging equipment as well as specialist areas of image recording. The chapter ends with a summary of targeting and illumination techniques.

Analytical methods of image orientation and object reconstruction are presented in Chapter 4. The emphasis here is on bundle triangulation. The chapter also presents methods for dealing with single, stereo and multiple image configurations based on measured image coordinates.

Chapter 5 brings together many of the relevant methods of digital photogrammetric image processing. In particular, those which are most useful to dimensional analysis and three dimensional object reconstruction are presented.

Photogrammetric measurement systems developed for close range are discussed in Chapter 6. They are classified into systems designed for single image, stereo image and multiple image processing. Interactive and automatic, mobile and stationary systems are considered, along with surface measurement systems utilising projected light patterns.

Chapter 7 discusses imaging configurations for, and solutions to, some critical close range tasks. After an introduction to network planning and optimisation the chapter concentrates on techniques for camera calibration, dynamic applications and aerial imaging from low flying heights.

Finally, Chapter 8 uses case studies and examples to demonstrate the potential for close range photogrammetry in fields such as architecture and heritage conservation, the construction industry, manufacturing industry and medicine.
1.2 Fundamental methods

1.2.1 The photogrammetric process

Photogrammetry encompasses methods of image measurement and interpretation in order to derive the shape and location of an object from one or more photographs of that object. In principle, photogrammetric methods can be applied in any situation where the object to be measured can be photographically recorded. The primary purpose of a photogrammetric measurement is the three dimensional reconstruction of an object in digital form (coordinates and derived geometric elements) or graphical form (images, drawings, maps). The photograph or image represents a store of information which can be re-accessed at any time.

Fig. 1.1 shows examples of photogrammetric images. The reduction of a three-dimensional object to a two-dimensional image implies a loss of information. Object areas which are not visible in the image cannot be reconstructed from it. This not only includes hidden parts of an object such as the rear of a building but also regions which can not be recognised due to lack of contrast or limiting size, for example individual bricks in a building façade. Whereas the position in space of each point on the object may be defined by three coordinates, there are only two coordinates available to define the position of its image. There are geometric changes caused by the shape of the object, the relative positioning of camera and object, perspective imaging and optical lens defects. Finally there are also radiometric (colour) changes since the reflected electromagnetic radiation recorded in the image is affected by the transmission media (air, glass) and the light-sensitive recording medium (film, electronic sensor).

For the reconstruction of an object from photographs or images it is therefore necessary to describe the optical process by which an image is created. This includes all elements which contribute to this process, such as light sources, properties of the surface of the object, the medium through which the light travels, sensor and camera technology, image processing, film development and further processing (Fig. 1.2).

Methods of image interpretation and measurement are then required which permit the image of an object point to be identified from its form, brightness or colour distribution. For every
image point, values in the form of radiometric data (intensity, grey value, colour value) and geometric data (position in image) can then be obtained. This requires measurement systems with the appropriate geometric and optical quality.

From these measurements and a mathematical transformation between image and object space, the object can finally be modelled.

Fig. 1.3 simplifies and summarises this sequence. The left hand side indicates the principal instrumentation used whilst the right hand side indicates the methods involved. Together with the physical and mathematical models, human knowledge, experience and skill play a significant role. They determine the extent to which the reconstructed model corresponds to the imaged object or fulfils the task objectives.

1.2.2 Aspects of photogrammetry

Because of its varied applications, close range photogrammetry has a strong interdisciplinary character. There are not only close connections with other measurement techniques but also with fundamental sciences such as mathematics, physics, information sciences or biology.

Close range photogrammetry has significant links with aspects of graphics and photographic science, for example computer graphics and computer vision, digital image processing, computer aided design (CAD), geographic information systems (GIS) and cartography.
Traditionally, there are also strong associations of close range photogrammetry with the techniques of surveying, particularly in the areas of adjustment methods and engineering surveying. With the increasing application of photogrammetry to industrial metrology and quality control, links have been created in other directions.

Fig. 1.4 gives an indication of the relationship between size of measured object, required measurement accuracy and relevant technology. Although there is no hard and fast definition, it may be said that close range photogrammetry applies to objects ranging from 1m to 200m in size, with accuracies under 0.1mm at the smaller end (manufacturing industry) and 1cm accuracy at the larger end (architecture and construction industry).

Optical methods using light as the information carrier lie at the heart of non-contact 3D measurement techniques. Measurement techniques using electromagnetic waves may be subdivided in the manner illustrated in Fig. 1.5. Techniques based on light waves are as follows:

- **Triangulation techniques**
 Photogrammetry (single, stereo and multiple imaging), angle measuring systems (theodolites), indoor GPS, structured light (light section procedures, fringe projection, phase measurement, moiré topography), focusing methods, shadow methods, etc.

- **Interferometry**
 Optically coherent time-of-flight measurement, holography, speckle interferometry, coherent radar

- **Time-of-flight measurement**
 Distance measurement by optical modulation methods, pulse modulation, etc.

1 Unsharp borders indicating typical fields of applications of measuring methods.
The clear structure of Fig. 1.5 is blurred in practice since multi-sensor and hybrid measurement systems utilise different principles in order to combine the advantages of each.

Photogrammetry can be categorised in a multiplicity of ways:

- By camera position and object distance
 - Satellite photogrammetry: processing of satellite images, \(h \) > ca. 200km
 - Aerial photogrammetry: processing of aerial photographs, \(h \) > ca. 300m
 - Terrestrial photogrammetry: measurements from a fixed terrestrial location
 - Close range photogrammetry: imaging distance \(h \) < ca. 300m
 - Macro photogrammetry: image scale > 1 (microscope imaging)

- By number of measurement images
 - Single image photogrammetry: single image processing, mono-plotting, rectification, orthophotographs
 - Stereophotogrammetry: dual image processing, stereoscopic measurement
 - Multi-image photogrammetry: \(n \) images where \(n \) >2, bundle triangulation

- By method of recording and processing
 - Plane table photogrammetry: graphical evaluation (until ca. 1930)
 - Analogue photogrammetry: analogue cameras, opto-mechanical measurement systems (until ca. 1980)
 - Analytical photogrammetry: analogue images, computer-controlled measurement
 - Digital photogrammetry: digital images, computer-controlled measurement
 - Videogrammetry: digital image acquisition and measurement
 - Panorama photogrammetry: panoramic imaging and processing
 - Line photogrammetry: analytical methods based on straight lines and polynomials

- By availability of measurement results
 - Real-time photogrammetry: recording and measurement completed within a specified time period particular to the application
Close range photogrammetry

- Off-line photogrammetry: sequential, digital image recording, separated in time or location from measurement
- On-line photogrammetry: simultaneous, multiple, digital image recording, immediate measurement

• By application or specialist area
 - Architectural photogrammetry: architecture, heritage conservation, archaeology
 - Engineering photogrammetry: general engineering (construction) applications
 - Industrial photogrammetry: industrial (manufacturing) applications
 - Forensic photogrammetry: applications to diverse legal problems
 - Biostereometrics: medical applications
 - Motography: recording moving target tracks
 - Multi-media photogrammetry: recording through media of different refractive indices
 - Shape from stereo: stereo image processing (computer vision)

1.2.3 Image forming model

Photogrammetry is a three-dimensional measurement technique which uses central projection imaging as its fundamental mathematical model (Fig. 1.6). Shape and position of an object are determined by reconstructing bundles of rays in which, for each camera, each image point P', together with the corresponding perspective centre O', defines the spatial direction of the ray to the corresponding object point P. Provided the imaging geometry within the camera and the location of the imaging system in object space are known, then every image ray can be defined in 3D object space.

From the intersection of at least two corresponding (homologous), spatially separated image rays, an object point can be located in three dimensions. In stereophotogrammetry two images are used to achieve this. In multi-image photogrammetry the number of images involved is, in principle, unlimited.

![Figure 1.6 Principle of photogrammetric measurement](image-url)
In normal English, the orientation of an object implies direction or angular attitude. Photogrammetric usage, deriving from German, applies the word to groups of camera parameters. Exterior orientation parameters incorporate this angular meaning but extend it to include position. Interior orientation parameters, which include a distance, two coordinates and a number of polynomial coefficients, involve no angular values; the use of the terminology here underlines the connection between two very important, basic groups of parameters.

The interior orientation parameters describe the internal geometric model of a camera. With the model of the pinhole camera as its basis (Fig. 1.7), the most important reference location is the perspective centre \(O \), through which all image rays pass. The interior orientation defines the position of the perspective centre relative to a reference system fixed in the camera (image coordinate system), as well as departures from the ideal central projection (image distortion). The most important parameter of interior orientation is the principal distance, \(c \), which defines the distance between image plane and perspective centre (see section 3.2.3).

A real and practical photogrammetric camera will differ from the pinhole camera model. The necessity of using a relatively complex objective lens, a camera housing which is not built for stability and an image recording surface which may be neither planar nor perpendicular to the optical axis of the lens gives rise to departures from the ideal imaging geometry. The interior orientation, which will include parameters defining these departures, must be determined by calibration for every camera.

A fundamental property of a photogrammetric image is the image scale or photo-scale. The photo-scale factor \(m \) defines the relationship between the object distance \(h \) and principal distance \(c \). Alternatively it is the relationship between an object distance \(X \) in the object, in a direction parallel to the image plane, and the corresponding distance in image space \(x' \):

\[
m = \frac{h}{c} = \frac{X}{x'}
\]

(1.1)

The photo-scale is in every case the deciding factor in resolving image details, as well as the photogrammetric measurement accuracy, since any measurement error in the image is multiplied in the object space by the scale factor (see section 3.2.1). Of course, when dealing with complex objects, the scale will vary throughout the image; one usually quotes a nominal or average value.

Footnote: In normal English, the orientation of an object implies direction or angular attitude. Photogrammetric usage, deriving from German, applies the word to groups of camera parameters. Exterior orientation parameters incorporate this angular meaning but extend it to include position. Interior orientation parameters, which include a distance, two coordinates and a number of polynomial coefficients, involve no angular values; the use of the terminology here underlines the connection between two very important, basic groups of parameters.
The exterior orientation parameters specify the spatial position and orientation of the camera in a global coordinate system. The exterior orientation is described by the coordinates of the perspective centre in the global system and three suitably defined angles expressing the rotation of the image coordinate system with respect to the global system (see section 4.2.1). The exterior orientation parameters are calculated indirectly, after measuring image coordinates of well identified object points with fixed and known global coordinates.

Every measured image point corresponds to a spatial direction from projection centre to object point. The length of the direction vector is initially unknown i.e. every object point lying on the line of this vector generates the same image point. In other words, although every three dimensional object point transforms to a unique image point for given orientation parameters, a unique reversal of the projection is not possible. The object point can be located on the image ray, and thereby absolutely determined in object space, only by intersecting the ray with an additional known geometric element such as a second spatial direction or an object plane.

Every image generates a spatial bundle of rays, defined by the imaged points and the perspective centre, in which the rays were all recorded at the same point in time. If all the bundles of rays from multiple images are intersected as described above, a dense network is created; for an appropriate imaging configuration, such a network has the potential for high geometric strength. Using the method of bundle triangulation any number of images (ray bundles) can be simultaneously oriented, together with the calculation of the associated three dimensional object point locations (Fig. 1.6, see section 4.3).

1.2.4 Photogrammetric systems

1.2.4.1 Analogue systems

Analogue photogrammetry (Fig. 1.8) is distinguished by different instrumentation components for data recording and for data processing as well as by a separation in location, time and personnel between the on-site recording of the object and the data evaluation in the laboratory or office. Preparatory work and targeting, additional (surveying) measurement and image recording with expensive analogue (film or plate) cameras take place on site. Photographic development takes place in a laboratory, so that direct, on-site control of image quality is not possible. Subsequently the photographs are measured using specialised instruments. The procedure involves firstly a determination of photo orientation followed by the actual processing of the photographic data.

The data obtained photogrammetrically are often further processed by users who do not wish to be involved in the actual measurement process since it requires complex photogrammetric knowledge, instrumentation and skills. The entire procedure, involving recording, measurement and further processing, is very time consuming using analogue systems, and many essential stages cannot be completed on site. Direct integration of analogue systems in procedures such as manufacturing processes is not possible.

1.2.4.2 Digital systems

The photogrammetric procedure has changed fundamentally with the development of digital imaging systems and processing (Fig. 1.9). By utilising appropriately targeted object points and digital on-line image recording, complex photogrammetric tasks can be executed within minutes on-site. A fully automatic analysis of the targeted points replaces the manual procedures for orientation and measurement. Special photogrammetric measuring instruments
are no longer required and are replaced by standard computing equipment. The high degree of automation also enables non-specialist users to carry out the photogrammetric recording and data evaluation.

Digital systems, since they offer automation and short processing cycles, are essential to the application of photogrammetry in complex real-time applications such as, in particular, industrial metrology and robotics. Decisions can be made directly on the basis of feedback from the photogrammetric results. If the result is delivered within a certain process-specific time period, the term real-time photogrammetry is commonly used.
1.2.4.3 Recording and analysis procedures

Fig. 1.10 shows the principal procedures in close range photogrammetry which are briefly summarised in the following sections.

1. **RECORDING**
 a) **Targeting:**
 Target selection and attachment to object features to improve automation and increase the accuracy of target measurement in the image
 b) **Determination of control points or scaling lengths:**
 Creation of a global object coordinate system by definition of reference (control) points and/or reference lengths (scales)
 c) **Image recording:**
 Analogue or digital image recording of the object with a photogrammetric system

2. **PRE-PROCESSING**
 a) **Computation:**
 Calculation of reference point coordinates and/or distances from survey observations (e.g. using network adjustment)

Figure 1.10 Recording and analysis procedures (red: can be automated in a digital system)
b) Development and printing:
Photographic laboratory work (developing film, making photographic prints)

c) Digitising:
Conversion of analogue photographs into digital images (scanning)

d) Numbering and archiving:
Assigning photo numbers to identify individual images and archiving or storing the photographs

3. ORIENTATION

a) Measurement of image points:
Identification and measurement of reference and scale points
Identification and measurement of tie points (points observed in two or more images simply to strengthen the network)

b) Approximation:
Calculation of approximate (starting) values for unknown quantities to be calculated by the bundle adjustment

c) Bundle adjustment:
Adjustment program which simultaneously calculates parameters of both interior and exterior orientation as well as the object point coordinates which are required for subsequent analysis

d) Removal of outliers:
Detection and removal of gross errors which mainly arise during (manual) measurement of image points

4. MEASUREMENT AND ANALYSIS

a) Single point measurement:
Creation of three dimensional object point coordinates for further numerical processing

b) Graphical plotting:
Production of scaled maps or plans in analogue or digital form (e.g. hard copies for maps and electronic files for CAD models or GIS)

c) Rectification/Orthophoto:
Generation of transformed images or image mosaics which remove the effects of tilt relative to a reference plane (rectification) and/or remove the effects of perspective (orthophoto)

This sequence can, to a large extent, be automated (connections in red in Fig. 1.10). Provided that the object features are suitably marked and identified using coded targets, initial values can be calculated and measurement outliers (gross errors) removed by robust estimation methods.

Digital image recording and processing can provide a self-contained and fast data flow from capture to presentation of results, so that object dimensions are available directly on site. One distinguishes between off-line photogrammetry systems (one camera, measuring result available after processing of all acquired images), and on-line photogrammetry systems (minimum of two cameras simultaneously, measuring result immediately).

1.2.5 Photogrammetric products

In general, photogrammetric systems supply three dimensional object coordinates derived from image measurements. From these, further elements and dimensions can be derived, for example
lines, distances, areas and surface definitions, as well as quality information such as comparisons against design and machine control data. The direct determination of geometric elements such as straight lines, planes and cylinders is also possible without explicit calculation of point coordinates. In addition the recorded image is an objective data store which documents the state of the object at the time of recording. The visual data can be provided as corrected camera images, orthophotos or graphical overlays (Fig. 1.11). Examples of graphical presentation are shown in Fig. 1.12 and Fig. 1.13.
1.3 Applications

Much shorter imaging ranges and alternative recording techniques differentiate close range photogrammetry from its aerial and satellite equivalents.

Writing in 1962 E. H. Thompson summarised the conditions under which photogrammetric methods of measurement would be useful:

“... first, when the object to be measured is inaccessible or difficult of access; second, when the object is not rigid and its instantaneous dimensions are required; third, when it is not certain that the measures will be required at all; fourth, when it is not certain, at the time of measurement, what measures are required; and fifth, when the object is very small ...”.

To these may be added three more: when the use of direct measurement would influence the measured object or would disturb a procedure going on around the object; when real-time results are required; and when the simultaneous recording and the measurement of a very large number of points is required.

The following applications (with examples) are among the most important in close range photogrammetry:

- **Automotive, machine and shipbuilding industries**
 - Inspection of tooling jigs
 - Reverse engineering of design models
 - Manufacturing control
 - Optical shape measurement
 - Recording and analysing car safety tests
 - Robot calibration

- **Aerospace industry**
 - Measurement of parabolic antennae
 - Control of assembly
 - Inspection of tooling jigs
 - Space simulations

- **Architecture, heritage conservation, archaeology**
 - Façade measurement
 - Historic building documentation
 - Deformation measurement
 - Reconstruction of damaged buildings
 - Mapping of excavation sites
 - 3D city models
• Engineering
 – As-built measurement of process plants
 – Measurement of large civil engineering sites
 – Deformation measurements
 – Pipework and tunnel measurement
 – Mining
 – Evidence documentation

• Medicine and physiology
 – Tooth measurement
 – Spinal deformation
 – Plastic surgery
 – Motion analysis and ergonomics
 – Microscopic analysis
 – Computer-assisted surgery

• Forensic, including police work
 – Accident recording
 – Scene-of-crime measurement
 – Legal records
 – Measurement of persons

• Information systems
 – Building information systems
 – Facility management
 – Production planning
 – Image databases

• Natural sciences
 – Liquid flow measurement
 – Wave topography
 – Crystal growth
 – etc.
In general, similar methods of recording and analysis are used for all applications of close range photogrammetry.

- powerful analogue or digital recording systems
- freely chosen imaging configuration with almost unlimited numbers of photographs
- photo orientation based on the technique of bundle triangulation
- visual and digital analysis of the images
- presentation of results in the form of 3D coordinate files, CAD data, photographs or drawings

Industrial and engineering applications make special demands of the photogrammetric technique:

- limited recording time on site (no significant interruption of industrial processes)
- delivery of results for analysis after only a brief time
- high accuracy requirements
- proof of accuracy attained

1.4 Historical development

It comes as a surprise to many that the history of photogrammetry is almost as long as that of photography itself and that, for at least the first fifty years, the predominant application of photogrammetry was to close range, architectural measurement rather than to topographical mapping. Only a few years after the invention of photography during the 1830s and 1840s by Fox Talbot in England, by Niepce and Daguerre in France, the French military officer Laussedat began experiments in 1849 on the image of a façade of the Hotel des Invalides. Admittedly Laussedat was then using a camera lucida and did not obtain photographic equipment until 1852.
(Poivilliers 1961); he is usually described as the first photogrammetrist. In fact it was not a surveyor but an architect, the German Meydenbauer, who coined the word “photogrammetry”. As early as 1858 Meydenbauer used photographs to draw plans of the cathedral of Wetzlar and by 1865 he had constructed his “great photogrammeter” (Meydenbauer 1912), a forerunner of the phototheodolite.

Meydenbauer used photography in order to avoid the conventional, often dangerous, manual method of measuring façades. He developed his own photogrammetric cameras with image formats up to 40 cm × 40 cm (see Fig. 1.23), using glass plates to carry the emulsion. Between 1885 and 1909 on behalf of the state of Prussia, Meydenbauer compiled an archive of around 16 000 metric images of the most important architectural monuments; it is still partly in existence today. The development of such archives has continued in many countries to this very day as insurance against damage or destruction of the cultural heritage (an example of Thompson’s third category: when it is not certain that the measures will be required at all, see section 1.3). Meydenbauer also developed graphical photogrammetric methods for the production of plans of building façades.

The phototheodolite, as its name suggests, represents a combination of camera and theodolite. The direct measurement of orientation angles leads to a simple photogrammetric orientation. A number of inventors, such as Porro and Paganini in Italy, in 1865 and 1884 respectively, and Koppe in Germany, 1896, developed such instruments (Fig. 1.24).

From terrestrial photographs, horizontal bundles of rays could be constructed; with two or more cameras a survey could be completed point by point using intersecting rays. By virtue of their regular and distinct features, architectural subjects lend themselves to this technique often

1 A metric camera is defined as one with known and stable interior orientation.
referred to as plane table photogrammetry. When using terrestrial pictures in mapping, by contrast, there was a major difficulty in identifying the same point on different photographs, especially when they were taken from widely separated camera stations; but a wide separation is desirable for accuracy. It is for these reasons that so much more architectural than topographic photogrammetry was performed during the 19th century. Nonetheless, a certain amount of topographic mapping took place during the last three decades of that century; most of this fell into Thompson’s first category, “when the object to be measured is inaccessible or difficult of access” (see section 1.3), for example the mapping of the Alps by Paganini in 1884 and the mapping of vast areas of the Rockies in Canada by Deville (Thompson 1965). Jordan mapped the Dachel oasis in 1873 and Finsterwalder developed analytical solutions.

The development of stereoscopic measurement around the turn of the century was a momentous breakthrough in the history of photogrammetry. The stereoscope had already been invented between 1830 and 1832 (Wheatstone 1838) and Stolze had discovered the principle of the floating measuring mark in Germany in 1893 (Sander 1923). Two other scientists, Pulfrich in Germany and Fourcade in South Africa, working independently and almost simultaneously¹, developed instruments for the practical application of Stolze’s discovery (Meier 2002, Atkinson 2002). Their stereocomparators permitted simultaneous settings of identical measuring marks on the two photographs and the recording of image coordinates for use in subsequent numerical computations; points were fixed by numerical intersection and measurement was still made point by point (Fig. 1.25).

Photogrammetry was about to enter the era of analogue computation, a very foreign concept to surveyors with their long tradition of numerical computation: digital computation was too slow to allow the unbroken plotting of detail, in particular of contours, which stereoscopic

¹ Pulfrich’s lecture in Hamburg announcing his invention was given on 23rd September 1901, while Fourcade delivered his paper in Cape Town nine days later on 2nd October 1901.
measurement seemed to offer so tantalisingly. Only analogue computation could extend the possibility of instantaneous feedback to the observer. If many surveyors regarded analogue computation as an aberration, then it became a remarkably successful one for a large part of the 20th century.

During the latter part of the 19th century and in several countries much effort and imagination was directed towards the invention of stereoplotting instruments, necessary for the accurate and continuous plotting of topography. In Germany, Hauck proposed such an apparatus. In Canada, Deville developed “the first automatic plotting instrument in the history of photogrammetry” (Thompson 1965). Deville’s instrument had several defects, but its design inspired several subsequent workers to overcome these, including both Pulfrich, one of the greatest contributors to photogrammetric instrumentation, and Santoni, perhaps the most prolific of photogrammetric inventors.

In Germany, conceivably the most active country in the early days of photogrammetry, Pulfrich’s methods were very successfully used in mapping. This inspired von Orel in Vienna to design an instrument for the “automatic” plotting of contours, leading ultimately to the Orel-Zeiss Stereautograph which came into productive use in 1909. In England, F. V. Thompson was slightly before von Orel in the design and use of the Vivian Thompson Stereoplotter (Atkinson 1980, 2002); he went on to design the Vivian Thompson Stereoplanigraph (Thomson 1908) which was described by E. H. Thompson (Thompson 1974) as “the first design for a completely automatic and thoroughly rigorous photogrammetric plotting instrument”.

The rapid development of aviation which began shortly after this was another decisive influence on the course of photogrammetry. Not only is the Earth photographed vertically from above an almost ideal subject for the photogrammetric method, but also aircraft made almost all parts of the Earth accessible at high speed. In the first half of the 20th century these favourable circumstances allowed impressive development in photogrammetry, with tremendous economic benefit in air survey. On the other hand, while stereoscopy opened the way for the application of photogrammetry to the most complex surfaces such as might be found in close range work, the geometry in such cases was often far from ideal photogrammetrically and there was no corresponding economic advantage to promote its application.
Although there was considerable opposition from surveyors to the use of photographs and analogue instruments for mapping, the development of stereoscopic measuring instruments forged ahead remarkably in many countries during the period between the First World War and the early 1930s. Meanwhile, non-topographic use was sporadic as there were few suitable cameras and analogue plotters imposed severe restrictions on principal distance, image format and disposition and tilts of cameras. Instrumentally complex systems were being developed using optical projection (for example Multiplex), opto-mechanical principles (Zeiss Stereoplanigraph) and mechanical projection using space rods (for example Wild A5, Santoni Stereocartograph), designed for use with aerial photography. By 1930 the Stereoplanigraph C5 was in production, a sophisticated instrument able to use oblique and convergent photography—even if makeshift cameras had to be used at close range, experimenters at least had freedom in the orientation and placement of the cameras; this considerable advantage led to some noteworthy work.

As early as 1933 Wild stereometric cameras were being manufactured and were in use by Swiss police for the mapping of accident sites, using the Wild A4 Stereautograph, a plotter especially designed for this purpose. Such stereometric cameras comprise two identical metric cameras fixed to a rigid base of known length and such that their axes are coplanar, perpendicular to the base and, usually, horizontal1 (Fig. 3.2a, see section 4.4.2). Other manufacturers have also made stereometric cameras (Fig. 1.26) and associated plotters (Fig. 1.27); a great deal of close range work has been carried out with this type of equipment. Initially glass plates were used in metric cameras in order to provide a flat image surface without significant mechanical effort (see example in Fig. 1.28). From the 1950s film was increasingly used in metric cameras which were then equipped with a mechanical film-flattening device.

1 This is sometimes referred to as the ‘normal case’ of photogrammetry.
In the 1950s we were on the verge of the period of analytical photogrammetry. The expanding use of digital, electronic computers in that decade engendered widespread interest in the purely analytical or numerical approach to photogrammetry as against the prevailing analogue methods. While analogue computation is inflexible, in regard to both input parameters and output results, and its accuracy is limited by physical properties, a numerical method allows virtually unlimited accuracy of computation and its flexibility is bounded only by the mathematical model on which it is based. Above all, it permits over-determination which may improve precision, lead to the detection of gross errors and provide valuable statistical information about the measurements and the results. The first analytical applications were to photogrammetric triangulation. As numerical methods in photogrammetry improved, the above advantages, but above all their flexibility, were to prove invaluable at close range.

Subsequently stereoplotters were equipped with devices to record model coordinates for input to electronic computers. Arising from the pioneering ideas of Helava (Helava 1957), computers were incorporated in stereoplotters themselves, resulting in analytical stereoplotters with fully numerical reconstruction of the photogrammetric models. Bendix/OMI developed the first analytical plotter, the AP/C, in 1964; during the following two decades analytical stereoplotters were produced by the major instrument companies and others. While the adaptability of such instruments has been of advantage in close range photogrammetry (Masry and Faig 1977), triangulation programs with even greater flexibility were soon to be developed, as described below, which were more suited to the requirements of close range work.

Analytical photogrammetric triangulation is a method, using numerical data, of point determination involving the simultaneous orientation of all the photographs and taking all interrelations into account. Work on this line of development had appeared before WWII, long before the development of electronic computers. Analytical triangulation demanded instruments to measure photocoordinates. The first stereocomparator designed specifically for use with aerial photographs was the Cambridge Stereocomparator designed in 1937 by E. H. Thompson (Arthur 1960). By 1955 there were five stereocomparators on the market (Harley 1963) and monocomparators designed for use with aerial photographs also appeared.
The bundle method of photogrammetric triangulation, more usually known as bundle adjustment, is of vital importance to close range photogrammetry. Seminal papers by Schmid (1956-57, 1958) and Brown (1958) laid the foundations for theoretically rigorous block adjustment. A number of bundle adjustment programs for air survey were developed and became commercially available, such as those by Ackermann et al. (1970) and Brown (1976). Programs designed specifically for close range work have appeared since the 1980s, such as STARS (Fraser and Brown 1986), BINGO (Kruck 1983), MOR (Wester-Ebbinghaus 1981) and CAP (Hinsken 1989).

The importance of bundle adjustment in close range photogrammetry can hardly be overstated. The method imposes no restrictions on the positions or the orientations of the cameras; nor is there any necessity to limit the imaging system to central projection. Of equal or greater importance, the parameters of interior orientation of all the cameras may be included as unknowns in the solution. Until the 1960s many experimenters appear to have given little attention to the calibration\(^1\) of their cameras; this may well have been because the direct calibration of cameras focused for near objects is usually much more difficult than that of cameras focused for distant objects. At the same time, the inner orientation must usually be known more accurately than is necessary for vertical aerial photographs because the geometry of non-topographical work is frequently far from ideal. In applying the standard methods of calibration in the past, difficulties arose because of the finite distance of the targets, whether real objects or virtual images. While indirect, numerical methods to overcome this difficulty were suggested by Torlegård (1967) and others, bundle adjustment now frees us from this concern. For high precision work it is no longer necessary to use metric cameras which, while having the advantage of known and constant interior orientation, are usually cumbersome and expensive. Virtually any camera can now be used. Calibration via bundle adjustment is usually known as self-calibration (see section 4.3.2.4).

The use of traditional stereophotogrammetry at close ranges has declined. As an alternative to the use of comparators, multi-photo analysis systems which use a digitizing pad as a measuring device for photo enlargements (e.g. Rollei MR2, 1986) have been widely used for architectural and accident recording. Many special cameras have been developed; for example modified professional photographic cameras which have an inbuilt réseau (an array of engraved crosses on a glass plate which appear on each image) for photogrammetric use (Wester-Ebbinghaus 1981) (Fig. 1.29).

\[^1\) In photogrammetry, unlike computer vision, calibration refers only to interior orientation. Exterior orientation is not regarded as part of calibration.\]
Since the middle of the 1980s the use of opto-electronic image sensors has increased dramatically. Advanced computer technology enables the processing of digital images, particularly for automatic recognition and measurement of image features, including pattern correlation for determining object surfaces. Procedures in which both the image and its photogrammetric processing are digital are often referred to as digital photogrammetry. Initially standard video cameras were employed generating analogue video signals which could be digitised with resolutions up to 780×580 picture elements (pixels) and processed in real time (real-time photogrammetry, videogrammetry). The first operational on-line multi-image systems became available in the late 1980s (e.g. Haggrén 1987, Fig. 1.30). Automated precision monocomparators, in combination with large format réseau cameras, were developed for high-precision, industrial applications (Fraser and Brown 1986, Luhmann and Wester-Ebbinghaus 1986). Analytical plotters were enhanced with video cameras to become analytical correlators, used for example in car body measurement (Zeiss Indusurf 1987). Closed procedures for simultaneous multi-image processing of grey level values and object data based on least squares methods were developed (e.g. Förstner 1982, Gruen 1985).

The limitations of video cameras in respect of their small image format and low resolution led to the development of scanning cameras which enabled the high resolution recording of static objects to around 6000×4500 pixels. In parallel with this development, electronic theodolites were equipped with video cameras to enable the automatic recording of directions to targets (Kern SPACE).

Digital cameras with high resolution, which can provide a digital image without analogue signal processing, have been available since the beginning of the 1990s. Resolutions range from about 1000×1000 pixels (e.g. Kodak Megaplus) to over 4000×4000 pixels. Easily portable still video cameras can store high resolution images directly in the camera (e.g. Kodak DCS 460, Fig. 1.31). They have led to a significant expansion of photogrammetric measurement technology, particularly in the industrial field. On-line photogrammetric systems (Fig. 1.32) are increasingly used, in addition to off-line systems, both as mobile systems and in stationary configurations. Coded targets allow the fully automatic identification and assignment of object

Figure 1.30 Mapvision: on-line multi-image system (1987)
features and orientation of the image sequences. Surface measurement of large objects is now possible with the development of pattern projection methods combined with photogrammetric techniques.

Figure 1.31 Still-video camera Kodak DCS 460 (1996)

Figure 1.32 GSI VSTARS on-line industrial measurement system
Interactive digital stereo systems (e.g. Leica/Helava DSP, Zeiss PHODIS) have existed since around 1988 (Kern DSP-1) and are in 2005 increasingly replacing analytical plotters, but they are rarely employed for close range use. Interactive, graphical multi-image processing systems are of more importance here as they offer processing of freely chosen image configurations in a CAD environment (e.g. PHIDIAS from Phocad, Fig. 1.33). Easy-to-use low-cost software packages (e.g. PhotoModeler from EOS, ImageModeler from REALVIZ, iWitness from PhotoMetrix) provide object reconstruction and creation of virtual 3D models from digital images without the need for a deep understanding of photogrammetry.

A trend in close range photogrammetry is towards the integration or embedding of photogrammetric components in application-oriented hybrid systems. This includes links to such packages as 3D CAD systems, databases and information systems, quality analysis and control systems for production, navigation systems for autonomous robots and vehicles, 3D visualization systems, internet applications, 3D animations and virtual reality. Another trend is for methods from computer vision, such as projective geometry or pattern recognition, to be increasingly used for rapid solutions without high accuracy demands.

Close range photogrammetry is today a well established, universal 3D measuring technique, routinely applied in a wide range of interdisciplinary fields; there is every reason to expect its continued development long into the future.

References

Further reading

Photogrammetry

Optics, camera and image acquisition

Digital image processing, computer vision and pattern recognition

3D computer graphics

Least squares adjustment and statistics

Applications

Standards and guidelines

GUM (1993) *ISO guide to the expression of uncertainty in measurement (GUM)*.

Organisations, conferences and working groups

ISPRS (International Society for Photogrammetry and Remote Sensing):
 Commission III: Theory and Algorithms
 Commission V: Close range Techniques and Machine Vision
 Publications: International Archives of Photogrammetry and Remote Sensing; ISPRS
 Journal of Photogrammetry and Remote Sensing
 www.isprs.org

ASPRS (The American Society for Photogrammetry and Remote Sensing):
 Publication: Photogrammetric Engineering and Remote Sensing
 www.asprs.org
The Remote Sensing and Photogrammetry Society:
Publication: The Photogrammetric Record
www.rspsoc.org

DGPF (Deutsche Gesellschaft für Photogrammetrie und Fernerkundung): Publications:
Bildmessung und Luftbildwesen (to 1989), Zeitschrift für Photo-grammetrie und
Fernerkundung (to 1997), Photogrammetrie-Fernerkundung-Geoinformation (since
1997); Publikationen der DGPF (proceedings of the annual symposia) www.dgpf.de

CIPA (Comité International de Photogrammétrie Architecturale):
Publications and conference proceedings.
http://cipa.icomos.org/

CMCS (Coordinate Metrology Systems Conference)
Publications and conference proceedings.
www.cmsc.org

SPIE (The International Society for Optical Engineering):
Publications and conference proceedings.
www.spie.org

VDI/VDE-GMA (VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik):
Publications: technical guide lines, conference proceedings.
www.vdi.de
Index

2½ D surface 90
3-2-1 method 247, 249
35 mm camera 143, 165
360° scanner 176
3-chip method 172
3D
 circle 86, 88, 89
digitiser 408
Helmert transformation 45
surface 90
4-parameter transformation 34
6-parameter transformation 35
6 DOF 214

Abbe’s comparator principle 401
absolute orientation 227–29
datum definition 228–29
model 227–28
spatial point distribution 245
absorption 155
acceptance
test 433–34, 442
tolerance 434
accident record 489
accuracy
 contour method 290–91
 image measurement 442
inner 250
instruments 442
length measurement 434, 436
object point 99
on-line systems 417
normal stereo case 104
self-calibration 263–64
stereo image processing 275
acquisition
 multi-image 98, 99–100
 single image 98, 102
adapter 417, 489, 492
additional
 parameter functions 242
 parameters 120
adjustment
 conditional least squares 58–59
 Gauss-Markov method 55
 least squares 34, 46, 55, 79
 of direct observations 55–56
 procedure 38
 reliability 64–66
 systems 43
 techniques 52–72
aerial
 image 465–66, 475, 489
 photogrammetry 5, 202
 triangulation 230
aerospace industry 13, 485
affine transformations
 matrix notation 36
 plane 35–36
 spatial similarity 44
affinity 114, 119, 120, 162, 243, 264
airborne laser scanning 475
aliasing 133, 154, 159
all-round measurements 430
altimeter 466
amateur camera 127, 163, 165
anaglyph 281, 410
analogue photogrammetry 5, 8
analogue-to-digital converter 161
analysis procedures 10–11
analytical
 photogrammetry 5, 20
 plotter 20, 407–09
angle of convergence 98
angular resolution 310
antenna measurement 447
anti-aliasing filter 133
aperture
 depth of field 110–12
 lens 106, 107
 linear 106
 relative 112–13
 size 134, 153
 telecentric lenses 114
approximate values 46–48
 3D transformation 46–48
 bundle adjustment 230, 234, 251–60
 functional model 54
 panorama orientation 311–12
 relative orientation 221, 226
 rotation parameters 211
 space resection 209
approximation 11, 83
 B-spline 80–81
 Bezier 81–82
 point 79
 surface 92
archaeology 6, 13, 466
architectural photogrammetry 6, 469–77
archiving 11
artificial cooling 156
as-built documentation 414, 484
autobar 255
auto-focus 165
auto-stereoscopic display 410
auxiliary coordinate system 241–42
B-spline 292
 approximation 80–81
 surface 81, 93
background
 intensity 426
 noise 156
balanced
 observations 447
 radial distortion 117
ball plate 435, 436
band
 absorption technique 464
 interleaved 323
band-pass filter 133
barcode 188
basal plane 217
base see stereobase
base components 219, 220, 229
basic configuration 447
Bayer pattern 173
beamer 192
Bernstein polynomial 81
best-fit element 285
Bezier
 approximation 81–82
 surface 93
bilinear transformation 37–39, 126
biostereometrics 6, 491
black-and-white film 130, 135
blooming 153, 156
blunder 217
 robust detection 259
BMP 324
Brown’s parameters 116
bucket brigade device 150
building
 planning 473
 records 469–70
bundle adjustment 11, 21
 additional observations 242
 approximate values 251–52
 collinearity equations 234
 data flow 202, 232–33
 datum defect 244–45
 development 230
 divergence 265
 error-free reference points 245–46
 extended model 239–40, 307–08
 geometric elements 301–02
 initial values, other methods 258
 method 229
 model 234–35
 multi-image 229
 number of unknowns 70
 packages 231
 panorama orientation 311–13
 process 232–33
 quality measure 260–64
 report 260
 strategies 264–66
 with straight lines 300–01
bundle of rays 226, 229, 258
 limitation of 114
bundle triangulation see bundle adjustment
C-mount 160
CAAD 473

CAD
 data 252, 258
 model 251, 264, 274, 472, 479, 484
 system 48, 72, 408, 448

Calibration 118, 119, 448–58
 correction values 118
 image variant camera 127
 laboratory 126, 128, 449
 matrix 121
 on-the-job 452
 plumb-line 302, 451–52
 quality 263–64
 robot 464
 simultaneous 100
 single station self- 456
 system 453
 test field 128, 144, 236, 238, 449–51
 with plane point field 454
 with variable test field orientation 243

Camera
 35 mm 143, 165
 amateur 127, 163, 165
 colour 151, 163, 172–74
 consumer 174
 digital 143, 147, 163–67, 180
 GPS 182
 high speed 174–75, 465
 integrated in probing device 404–05
 interior orientation 128–29, 144
 inverse 424, 428
 large format 122, 140, 145, 146
 line scanning 169
 medium format 138, 143, 144, 145, 166
 metric 124, 126–27, 128, 140–41
 micro-head 159
 non-metric 127, 146
 panorama 171
 réseau 143, 144
 réseau-scanning 169, 170
 robot 170
 scanning 147, 168–71, 176
 semi-metric 127, 129
 single lens reflex 138–39, 165
 stereometric 19, 99, 142
 still-video 163, 165, 166
 studio 139
 video 147, 157–63, 178
 view finder 138, 139, 144

CameraLink 163

Camera-view scanner 176

Car
 industry 487–88
 safety testing 462, 487

CCD
 CMOS, comparison to 152–53
 digital camera 164
 geometric accuracy 154–55
 line sensor 169–71
 parallel method 172
 resolving power 153–54
 sensor principals 148–52
 signal-to-noise ratio 157
 spectral sensitivity 156
 still-video 163, 165, 166
 technology 147–48
 video camera 157–63

CCIR 157, 158, 162

Central
 perspective 107–09, 115
 projection 37, 45, 48, 50, 204, 267, 293
 centroid 48, 75, 84
 optical 111, 193
 charge 148
 Cholesky factorisation 70
 cinematography 462
 circle of confusion 109, 110
 circuit noise 157
 circumscribed element 290
 city model 474–75
 closed loop image configuration 236
 CMOS 125, 152–53, 164, 173, 174
 coded light approach 427–28
 coefficient matrix see Jacobian matrix 53
 cofactor matrix 54, 60, 64
 collimator 449
 collinearity equations 45, 204–06
 bundle adjustment 234
 epipolar geometry 218, 222
 exterior orientation 206
 floating mark 407
 panorama image 311
 space intersection 283
 space resection 206
 straight lines 296–97
 with phase values 430
colour
 camera 151, 163, 172–74
coupler 136
film 130, 135
reversal film 136
transformation 326
comparator 401–04
 coordinate system 32
 coordinates 402
compression see image compression
computer aided architectural design 473
confidence
 ellipsoid 284
 interval 61–63
 level 62
configuration defect 245
conjugate diameter 78
connection matrix 236, 254
connectivity 322, 362, 376
constraint
 density 69
 equations 58
constraints
 between unknowns 58
 non-linear 58
consumer camera 174
contour measurement 285
contrast 131–32, 135, 137, 143, 194
 transfer function 131
control points 10 see also reference points
convergent imagery 111, 458
coordinate metrology 285
coordinate system
 auxiliary 241–42
 comparator 32
image 31, 115, 119, 123–25, 126–27, 146, 203, 211
 intermediate 46
 machine 125
model 32, 218–20, 227, 252, 294
national geodetic 33
object 33, 227, 446, 452
pixel 320–22
sensor 125
temporary 306, 310
world 33, 45
coplanarity 298
 constraint 219–20, 307
correction
 equations 53, 58
 functions 115, 117
correlation
 between adjusted parameters 63, 233, 243, 260,
 263, 264, 457–58
 coefficient 54, 63
 image 366
\cos^4 law 111
covariance matrix 54, 60, 63, 67, 70, 235, 249,
 283, 446, 457
cross ratios 39
curves 78–82
 B-spline 93
 second order 75
cycles per pixel 154
cylinder 87–88, 288–90, 309, 313–14
cylindrical projection 472
danger
 cylinder 225
 surface 212, 225
dark current noise 156, 157
data snooping 67
datum 228–29, 236, 244–51, 301
 defect 57, 244–45, 300
 definition 232, 235, 245, 246, 247, 446
 point 248, 249
decentring distortion 113, 118
defocusing 107, 110, 111, 134
deformation analysis 476, 478, 481
degrees of freedom 59, 62, 214
Delaunay triangulation 91
demodulation 426
density 47
 high point 178
 neutral density filter 111
 optical 136, 137
 refraction 105
target 185
depth
 information 275
 of field 110–12, 138, 444
design see also network design
 factor 103, 104, 261, 278
 matrix see Jacobian matrix
detectability 401
detector
 signal 134
 size 153, 154
 spacing 134, 153
development, chemical 136
diffraction 106–107
disk 106
Index

Firewire 163
fish-eye lens 264
fixed datum 245
fixing 136
flatness measurement error 437
floating mark 99, 183, 186, 275, 281–83, 407, 409
fluorescence 431
focal length 107
 extension of 165
 image 101
 internal 104
 lens 100, 101, 112–15, 144, 146
focal place shutter 139
focusing 109–11, 113, 116, 138, 144
 methods 4
forensic photogrammetry 6, 489–90
format angle 112–13, 165
forward motion compensation 465
frame
 grabber 119, 161–63, 465
 transfer 150
free-form surfaces 72, 93, 275, 475–76, 487, 491
free net adjustment 248–51, 262, 301, 446, 450
frequency
 limiting 153
 modulation 180
 Nyquist 133, 153, 154
 pixel 162
 sampling 132
 scanning 161–62
 spatial 129, 131, 133
fringe modulation 426
fringe projection
 coded light approach 427–28
 dynamic 426–27
 multi-camera 428
 phasogrammetry 428–31
 stationary 425
full-frame transfer 150
functional model 52–54
galvanometer 176, 194
Gaussian
 algorithm 70
 distribution 61–62
 filter 322, 336, 343
good pixel 162
geodetic engineering surveys 478
geometric elements 72–94
GIF 324
goniometer 128, 449
GPS 182–83, 242, 252
grain noise 135
graphical
 plotting 11
 transformation 48–52
Gray code 427
gross error
 detection 67–69
 divergence 265
 elimination of 266
 reliability 64–66
 standard deviation 60
Grüber points 224
guide number 190
gyroscope 242
HDTV 161
height-to-base ratio 99, 104
high-speed camera 174–75, 465
homologous points 216, 219, 225, 226, 234
horizontal parallax 217
horizontal synchronisation 157, 161
hyperfocal distance 111
identification capability 103
IHS transformation 326
illuminance 137
image
 compression 324, 325–27, 328, 334
 coordinate system 31, 115, 119, 123–25,
 126–27, 146, 203, 211
 display 410
 distance 104, 107, 121
 format 100, 101, 113, 117, 141, 143, 458
 guided surgery 492
 line 282, 296–97, 298, 302
 map 470
 mosaic 269, 274, 470
 plane 108, 114, 115, 121, 124, 126, 141, 162
 pyramid 322, 346–47, 367, 379, 384
 quality 326, 353, 354, 375
 radius 108, 115, 116, 117, 186, 187
 rectification 223, 269
 scale 100–04, 111, 114, 121, 130, 443
 scale factor 459, 460, 465
 sequence 163, 175, 461–64
 space shift 268
 storage 324
image matching
digital stereo 216
 with lines 293
imaging
 angle 444
 errors 115, 120, 122
 optical 104, 114
 scale 105, 110
 sequential 462–63
 synchronous 461
 vector 115
imaging configuration 103, 128, 183, 443–45
 camera calibration 453
 planning 444
indoor GPS 4
industrial
 metrology 93, 433
 photogrammetry 6, 485
inertial
 navigation units 242, 252
 system 182, 183, 466
information
 content 129, 321, 322, 328, 334
 systems 14, 24
infra-red
 absorbing filter 156
 remote control 144
initial values by bundle adjustments 251–60
 graphical 258
 independent model transformation 254–56
 space intersections and resections 253–56
 spatial successive model creation 254
 with automated point measurement 252, 255–58
inscribed element 290
integration time 147, 156, 175, 194
intensity
 changes 134
 diffraction 106–07
 film layers 136
 laser scanning 178
 luminous 111
 radiometric properties 156
interchangeable lens 140
interference 106, 193
interferogram 426
interferometry 4, 437
 speckle 4
interior orientation
 calibration 128–29
 image coordinate system 123–25
 imaging errors 115–22, 112–23
 metric camera 140–41
 non-metric 146
 panoramic cameras 171–72
 parameters 114–15
 semi-metric cameras 142–46
 transformations 125–26
 interlaced scanning 157
 interlens shutter 140, 144
 interline transfer 134, 150–52, 168
 interpolation 78, 92–93
 grid 125, 126
 within triangle 92
 intersection 279–81
 angle 224, 225, 253, 254, 447
 spatial 280, 283
 inventory recording 484
 inverse
 camera 424, 428
 space resection 214
 iris diameter 112
 isometry 50

Jacobian matrix 43, 53, 54, 56, 57, 66, 70, 76, 78, 87, 89
JPEG 324, 325–26

L1 norm 259
L2 norm 55, 69
laboratory calibration 126, 128, 449
Lagrangian multipliers 59
large format camera 122, 140, 145, 146
laser
 projector 193–94
 scanner 176–79, 194, 431
 scanning 475
 tracker 436, 486
Laussedat 15
LCD projector 192
least squares
 best-fit 76, 93
 conditional adjustment 58–59
 error detection 67
 general adjustment 34, 56–58
 linear model 55–59
 matching 367
 method 55–59
 polynomial coefficients 79
 robust estimation 69
LED 185
length measurement
 accuracy 434, 436
 error 434–35
 uncertainty 436
lens
 aperture 107
 distortion 267
 equation 104
 design 107–09
 interchangeable 140
 zoom 113
leverage point 69, 266
light
 fall-off 111
 gathering capacity 112
 section 481
 -section projector 462
 sensitivity 134, 135, 137, 159
limiting
 bundles 107
 frequency 153
line
 constraints 301
 extraction 475
 interleaved 323
 jitter 161
 pairs per pixel 154
 photogrammetry 5, 293–302
 projection 193
 -scanning camera 169
 section method 193
 synchronisation 157
 widths per picture height 154
linear programming 69
linearisation 70
locator 214–15, 492, 493
lookup table (LUT) 161
luminous intensity 111

machine coordinate system 125
macro
 photogrammetry 5
 scanning 168–71
material testing 412
matrix sensor 148, 150–52
 accuracy potential 176
 coordinate system 125
 geometric accuracy 154–55
 macro-scanning 169–71
 micro-scanning 168
 signal-to-noise ratio 157
 space-multiplex method 173
still-video cameras 165
time-multiplex method 173
video camera 157

mean point error 283
mechanical projection 281
media 302–08
 bundle-invariant 308
 interfaces 105, 302–03
 object-invariant 307–08
medical applications 491–93
medicine and physiology 14
medium format camera 138, 143, 144, 145, 166
metric camera 124, 126–27, 128, 140–41
Meydenbauer 16
micro
 -head camera 159
 -mirrors 193
 -prism 184
 -scanning 168
microlens 152, 159
 array 152
mobile mapping 183
mobility 435
model
 coordinate system 32, 218–20, 227, 252, 294
 coordinates 221–22, 253
 functional 52–54
 Gauss-Markov linear 55–59
 helicopter 465, 466
 matrix see Jacobian matrix
 stochastic 54–55
modulation
 frequency 180
 of detector system 134
 transfer 459
 transfer function 107, 131, 133
mono-comparator 402
monoplotting 271
Moore-Penrose inverse 249
mosaic 269, 274, 470
motography 6, 464
MPEG 163
MTF50 154
multi-channel image 323
multi-image
 acquisition 98, 99–100
 configuration 99–100, 252–53, 255
 orientation 229, 251, 258
 photogrammetry 5, 6
 processing 274, 283–93
 triangulation 99
multi-media photogrammetry 6, 302–08, 463

navigation 465, 492, 493
neareast
neighbour 322
sharp point 111
net strain 242
network design 446
non-centrality parameter 55, 61
non-metric camera 127, 146
normal
 case of stereophotogrammetry 217, 222, 275–77
 distribution 65
 equation matrix 243, 248
 equations 56, 57, 58
 vector 85, 86
normalised images 222–23
Nyquist frequency 133, 153, 154
null hypothesis 65

object
 accuracy 445
 coordinate system 33, 227, 446, 452
 distance 100, 104
 edge measurement 423
 environment 444
 line 293–302
observation
 vector 52
 weights 447
off-line photogrammetry 6, 11, 22, 415–17
on-line photogrammetry 6, 11, 417–20, 486, 492–93
on-the-job calibration 452 see also self-calibration
optical
 axis 31
 centroid 111, 193
 projection 281
optimisation
 configuration 446
 point density 447
opto-mechical projection 281
order
 of calculation 252–53
 of images 259
 of observations 236
orientation
 absolute 227–29
 exterior 8, 202–04
 for analytical instruments 413
 interior 7, 21, 114–29
 panoramic image 311–13
 procedures 11
 relative 218–27
 single image 206–14
 stereo pairs 215–17
orthochromatic 138
orthonormal 35
matrix 213
orthophoto 5, 11, 271–74
outlier 11, 64, 67
outline shape measurement 422–23
output of results 442
over
 -exposure 137
 -parameterisation 120
overflow effect 156

panchromatic film 138
panorama
 camera 171
 photogrammetry 5, 309–14
panoramic scanner 176
parabolic antennas 485
paraboloid 86, 89–90
parallax
 horizontal 217
 image 99
 measurement 409, 424
 x- 104, 217, 275, 277
 y- 219, 223, 277, 280
parallel projection 114, 171, 272
parallelepiped 85
parameter
 estimation 46, 288
 vector 52
parametric form 73, 82, 86
partial metric camera see semi-metric camera
particle flow 463–64
pattern projection 194
 active 424, 425–31
 passive 424, 431–33
payload 465
pentagonal prism 139, 144
perspective centre 109–09, 113–15
phase
 angle 106, 107
 measurement 425, 426
 shift method 426–27
phase difference 425, 426
 measurement 176
phase locked loop 161
phasogrammetry 428–31
photo coordinates see image coordinates
photo diode 151, 153
photogrammetry
 aerial 5, 202
 analogue 5, 8
 analytical 5, 20
 architectural 6, 469–77
 digital 5, 22
 engineering 6
 forensic 6, 489–90
 industrial 6, 485
 line 5, 293–302
 macro 5
 multi-image 5, 6
 multi-media 6, 302–08, 463
 off-line 6, 11, 22, 415–17
 on-line 6, 11, 417–20, 486, 492–93
 panorama 5, 309–14
 plane table 5, 17
 real-time 5, 9, 22
 satellite 5
 single image 5, 266–74
 stereo 5
 terrestrial 5
 underwater 308
photograph 148–49, 155
 shot noise 157
phototheodolite 16, 181
picture tube 148
pixel 320
 clock 162
 coordinate system 320–22
 frequency 162
 interleaved 323
 jitter 162
 level depth 321
 spacing 134
 value 321
Planck’s quantum 156
plane 84–86
 best-fit 270
 resection 311
 table photogrammetry 5, 17
PLL synchronisation 161
plumb-line calibration 302, 451–52
PNG 324
point
 density 447
 of autocollimation 108
 of symmetry 108
 projection 193
 spread function 107, 134
polar mode 182
polarised image display 410
polygon 78–81, 91–92
polynomial 36, 78–79
 Bernstein 81
 transformation 36
positive image 31
power of test 65–66
pre
 -exposure 143
 -processing 10
precision 59–61, 66, 250
 comparator 401, 403
 of adjusted object coordinates 261–63
 of image coordinates 260–61
primary rotation 42
principal
 distance 31, 100–01, 104, 107–08, 113–15, 121, 263, 267, 278
 plane 105, 107, 114
 point 108, 114–16, 127, 141
probability density 61
probing
 camera integrated in 404–05
 device 404–05, 415
 error 434, 437
 tools 189
progressive-scan 154, 158, 174
projection
 axonometric 50
 central 50
 centre see perspective centre
 isometric 50
 matrix 48, 49, 50, 121, 214
 plane 297–98, 302
projective
 geometry 48
 transformation 37–39, 266–69
projector
 laser 193–94
 LCD 192–93
 light section 462
 orientation parameter 430
 pattern 428
propagation of light 106
pseudo inverse 249
pulsed light technique 464
pupil
 entrance 107, 112
 exit 107
pyramid see image pyramid
Index

quadrilateral 37
quantisation 132
table 326
quantum efficiency 148
quaternions 42
radial distortion 108, 115–20, 121, 208, 213, 243, 263, 304
random
error 52, 61
vector 52
rank defect 57, 59, 244–45, 246, 248
rapid prototyping 487
raster
projection 431–32
reflection 432
raw data 322, 324
ray tracing 305–07, 307–08
read-out register 148, 149, 150, 151
real-time photogrammetry 5, 9, 22
reconnaissance 465
recording 10–11, 15
rectification
differential 271–74
digital 269
image 269
plane 269
projective 266
redundancy 46, 55, 64, 66
average 69
matrix 64
number 60, 63, 64, 65, 68, 69
reference
lines 300
object 435–36
scale bar 483, 486
reference points 44–47, 57, 245–48, 441
inconsistencies 245–48, 250, 262
minimum configuration 246
observed 245, 246
reflection 106
in a line 49
reflex camera
single lens 138–39, 165
refraction 305–06
index 105
regression line 74–75
relative
aperture 112–13
orientation 218–27
reliability 64–66, 446
data snooping 67
external 66
internal 66, 67
remote control 465
Remotely Piloted Vehicle 465
repeated measurements 55
réseau 31, 37, 124–25
camera 143, 144
scanner 403–04
scanning camera 169, 170, 403–04, 406, 423
transformation 126
resection
inverse 214
plane 311
space 206–12
residuals
error detection 67–69
least squares method 55–59
quality measure 59
reliability 64–66
span 61
residuum 56, 59, 64
resolution 129–32, 441
pyramid see image pyramid
resolving
power 129–30, 153–54, 459
threshold of application system (RETAS) 131
retro target 104, 184–85, 188
re-verification 433–37
reverse engineering 487
RGB 321
ring flash 144, 184, 188, 191
RMS 60
RMSE 60
robot
calibration 464
calibration probe 406
camera 170
pose estimation 406
robust adjustment 68
robust estimation
L1-norm 69
with weighting function 68–69
rotary table 423–24, 430
rotating
laser 481
line scanner 171
rotation
axis 311
primary 42
secondary 41, 42
sequence 204
spatial 39–44, 49
rotation matrix 35, 39–44, 45, 47, 49, 87
for exterior orientation 203
for small rotations 44
plane 35–36
with algebraic functions 42–43
with direction cosines 43
rotationally symmetric shapes 86–90
RS-170 157, 158
run-length encoding 325, 326
sampling
 device 134
 frequency 132
 theorem 132–33
satellite photogrammetry 5
saturation 148, 156
scale factor 98, 205, 211
 bundle adjustment 300
 Direct Linear Transform 213
 model 221, 369
 panoramic system 310
 relative orientation 226
 space resection 295
 spatial intersection 280
scanning 98
 camera 147, 168–71, 176
 frequency 161–62
 theorem 153
scene-of-crime measurement 489
Scheimpflug’s condition 139
self-calibration 122, 128, 141, 144, 165, 188, 238,
 242–43, 263–64, 453
semi-metric camera 127, 129
sensitometry 136
sensor
 clock 160
 coordinate system 125
 deformations 155
 element 134, 148–51, 153–58
 unflatness 120, 126, 155
shading methods 5
shaft view finder 144
shape from stereo 6
sharpness of object edge 290
shear 119–21, 243, 264
shifted cameras 98
shipbuilding industries 13, 488–89
shutter 139–40
Siemens star figure 130
signal-to-noise ratio 157
significance level 65, 66
similarity transformation 34–35
 plane 34–35
 spatial 38, 44–48
 with lines 299–300
simulation 448
simultaneous calibration see self-calibration
sinc function 134
single
 image photogrammetry 5, 266–74
 lens reflex camera 138–39, 165
 station self-calibration 456
slit diaphragm 106
slow scan 158
SLR camera 138, 144
smear 156
snakes 291–93
Snell’s law 105
solid state sensor 148
space intersection 222, 275, 279–81, 283–85,
 288, 315
 combined with resection 253–54
 for panorama images 315
space multiplex 173
space resection 206–12, 293–95, 405, 406 see also resection
 for panorama image 312
 inverse 404
 with minimum object information 209–11
 with parallel object lines 293–95
sparse technique 71
spatial
 frequency 129, 131, 133
 similarity transformation 38, 44–48, 49, 211,
 226, 228, 241, 289, 300
spectral decomposition 284
spectral sensitivity
 film 138
 imaging sensors 156
spline 79–82
 B- 80–81, 93
 Bezier approximation 81–82
 cubic 79, 80, 93
split screen 410
standard deviation
 a posteriori 55, 56, 57, 59, 60, 68
 a priori 55, 56, 60, 66, 68
 average value 56
 unit weight 55, 56, 60, 66, 68
 unknowns 60
starting model 252–55, 259
stationary measuring systems 420–24
step gauge 435, 436
stereo
 image matching 216, 223, 275
 -lithography 475
 vision 275
 -workstation 407, 410–11
stereobase 104, 219, 224, 279
stereocamera 412–13
stereocomparator 17, 20, 402
stereocamera 19, 99, 142, 432
stereophotogrammetry 5
 normal case 142
Stereoplanigraph 18–19
stereoplotter 18–20
stereoplotting instruments 18
stereoscope 17
stereoscopic viewing 402, 410
stereovision system 412–13
still-video camera 163, 165, 166
stitching 309, 313
stochastic model 52, 54–55, 56, 60
storage zone 150
straight line
 best-fit 74, 84
 in space 82, 86, 285–87
 regression line 74–75
stroboscopy 464
structure zone 130
structured light 4
Student distribution see t-distribution
studio camera 139
subpixel coordinates 321, 367
subtractive colour 136
surface
 measurement systems 424–33
 model 37, 90, 91, 93
surfaces 90–94
surveyed directions 241
synchronisation
 error 460–61
 horizontal 157, 161
 line 157
 PLL 161
 vertical 157
system
 calibration 453
 combinations 442
 noise 157
t-distribution 62, 65
tactile
 measuring probe 417, 419
 probing 487, 492
tangential and asymmetric distortion 109, 118,
 243, 264
target 183–95, 255–58, 275
 circular 183
 coded 188–89, 255–58
 diameter 186–88
 eccentricity 186–88
 luminous 185, 464
 microprism 184
 retro-reflective 184–85
targeting 10, 183–95
 eccentric 189–90
 object 441
telecentric lens 114
telephoto lens 109
temporary coordinate system 306, 310
terrestrial photogrammetry 5
test
 field calibration 128, 144, 236, 238, 449–51
 pattern 130
tetrahedron 209, 293
theodolite 100
 measuring system 182, 436, 437, 480, 486
 video 181–82, 482
threshold function 131
tie points 216–17, 219, 224–26, 245, 252–54
TIFF 323–24
tilted images 453, 456
time
 -of-flight 4
 -multiplex method 173
topology 472–73
total redundancy 64
trace 249
traceability 434
trajectory 461–63
transformation
 3D Helmert 45
 4-parameter 34
 6-parameter 35
 affine 35
 bilinear 37, 126
 graphical 48–52
 interior orientation 125–26
 plane affine 35
 polynomial 36
Index

projective 37–39
réseau 126
spatial similarity 38, 44–48, 49, 211, 226, 228, 241, 289, 300
translation 34, 45
transparency 136
triangulation 91–92
aerial 230
bundle adjustment 5, 8, 15, 99, 172
geometric elements 72
laser projection 193
photogrammetric 20
principle 435
targeting 184
techniques 4
ture colour
 image 321
 sensor 172, 173
tunnel profile measurement 481–82
ultra-light aircraft 465
uncertainty
 image measurement 102–04
 length measurement 436
under-exposure 137
undersampling 133
underwater photogrammetry 308
unflatness
 film 120
 sensor 120, 126, 155
unwrapping 426
USB 163

variance component estimation 67–68, 261
vario lens 113

vector
 image coordinates 31
 inconsistencies 58
velocity 459–60
 of propagation 105–06, 156
verification of accuracy 442
vertical
 line focus 282
 synchronisation 157
video
 beamer 192
 camera 147, 157–63, 178
 -theodolite 181–82, 482
videogrammetry 5, 22
view finder camera 138, 139, 144
viewing angle 445
vignetting 111
visual processing 275
visualisation
 3D 472–74, 491
 building 472–74
VRML 473
wavelet compression 324–25
weight matrix 54, 56, 68
weighted datum 246
wire model 91
x-parallax 217, 275, 277
y-parallax 219, 223, 277, 280
zoom lens 113
χ^2-distribution 284